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Nearly all biology occurs in ionic solutions and involves the transport of ionic charge: it is 

only mild hyperbole to call ionic solutions the ‘liquid of life’(Edsall and Wyman 1958; Tanford 
and Reynolds 2001). Nearly all biology is controlled by proteins, because proteins are the only 
product of genes, and genes are the blueprints of life. Genes contain (almost) all the information 
needed to make an animal. The transport of ions through proteins with holes down their middle 
(called ion channels and transporters) is the control mechanism for a vast range of biological 
function in health (Ashcroft 1999; Hille 2001) and disease (Ashcroft 1999;Lehmann-Horn and 
Jurkat-Rott 2000; Rose and Griggs 2001). Ion channels are nano—nearly pico—valves that 
allow atomic scale structures to control macroscopic flow and so are of enormous technological 
interest. It is hard to exaggerate the importance of studying the transport of charge in channels. 

Theories and simulations of charge transport in proteins (and in solution) have had great 
difficulty, despite their evident importance, because their essential behavior extends over so 
many scales. Theories must accurately deal with long range electric fields, atomic scale 
structures, and devices that function only far from equilibrium. Theories and simulations have 
been unable to calculate or derive the fundamental properties of solutions and ions in channels, 
or to calculate or derive the approximate ‘device equations’ that are known to describe these 
systems. 

Simulations face particular difficulties. Simulations in atomic detail must deal with atomic 
motions that are computed with femto to picosecond time steps in systems that move 
significantly only after micro or millseconds. Methods to average these atomic motions are not 
known. Simulations must deal with chemical modulators whose action depends on the precise 
number density (‘concentration’) of modulator in ranges of µM even though direct simulations of 
such densities must include some 1011 molecules of solvent if they are done in atomic detail, as 
they nearly always are. Simulations must deal with electric fields that are known experimentally 
to spread mm in long cells like nerve fibers and to change the transport of ions through 
individual channel proteins mm from the source of the field (Jack, Noble et al. 1975). 

Charge transport in semiconductors occurs by electrodiffusion of quasiparticles and so is 
surprisingly similar to charge transport in ionic solutions, which occurs by electrodiffusion of 
real particles. Electrodiffusion in transistors occurs through a background of immobile doping 
charge, which forms the transistor; electrodiffusion in channels (and transporters) occurs through 
a background of immobile permanent charge on the channel protein. The similarity is striking 
(Eisenberg 1996; Eisenberg 2003; Eisenberg 2003). 

Charge transport in semiconductors has been simulated with great success in the field of 
computational physics (Selberherr 1984; Jacoboni and Lugli 1989; Hess 1991; Hess, Leburton et 
al. 1991; Ferry 2000; Hess 2000; Damocles 2005) where simulations routinely compute 
macroscopic properties in atomic detail. Our overall goal is to achieve similar success in the 
theory and simulation of ionic transport in solutions and proteins.  

Theory and simulations of semiconductors and transistors start (both historically—Shockley 
1950—and logically, references above) with the electric field, in contrast to theory and 
simulations of ions in solutions and proteins. Theory and simulation of ions in solution 
customarily start with uncharged particles. Theory and simulations of semiconductors and 
transistors (nearly) always compute the electric field whenever charge moves: they are said to be 
‘self-consistent’.  
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Self-consistent simulations of ions (which have finite size compared to the point 
quasiparticles of semiconductors) have been done successfully by semiconductor workers 
associated with our group (Aboud, Marreiro et al. 2004; Saraniti, Aboud et al. 2004; van der 
Straaten, Kathawala et al. 2004) and by labs starting from different traditions, chemical tradition 
(Kurnikova, Coalson et al. 1999; Cardenas, Coalson et al. 2000; Graf, Nitzan et al. 2000; 
Mamonov, Coalson et al. 2003), physical tradition (Chung, Hoyles et al. 1998; Moy, Corry et al. 
2000; Chung and Kuyucak 2001; Corry, Allen et al. 2001; Edwards, Corry et al. 2002; Corry, 
Kuyucak et al. 2003; Corry and Chung 2005) and biophysical tradition (Im and Roux 2002; Im 
and Roux 2002; Aksimentiev and Schulten 2005). I only cite the established workers in the field 
and do not mean to give offence to the many other workers entering the field making 
contributions of enormous promise.  

Despite this growing literature, the main issues in simulations are unsolved. Simulations of 
current voltage curves controlled by µmolar concentrations of modulators cannot be done in 
atomic detail. 

Theoretical work is in a very different state. Self-consistent theories of ion transport are 
noticeable by their absence. Theoretical work on ion transport is of course enormous, but it 
historically has grown from the study of transport of uncharged particles, and rarely computes 
the electric field from the charges being transported and the boundary conditions that drive that 
transport. The historical work of Einstein, Langevin, Smoluchowski, and Sutherland described 
the diffusion of colloids in water, and colloids are highly charged—as are water molecules, even 
though the net charge of water is zero—but this work did not include explicit treatment of the 
electric field and did not calculate the electric field from the charges whose motion is described 
in the stochastic differential equations. 

The problem I pose is to derive a theory of ion transport in which the transport equations and electric 
field equations are solved together. In bulk that is enough. But in devices like transistors and ion 
channels boundary conditions are different in different places, as they are in (nearly) all devices, 
worthy of that name. The equations must then be solved with the (spatially nonuniform) 
boundary conditions needed to describe the supply and removal of ions (and thus charge) from 
the ends of the channel. These spatially nonuniform boundary conditions (nearly always) drive 
macroscopic flow—often large flows— and so the problem is nonequilibrium as well as coupled 
and multiscale in its essence. 

Such a problem might seem beyond the reach of mathematics but I think not, if 
approximations are chosen judiciously so attention is focused on systems where we know (from 
experiments) that simple behavior occurs. For example, current flow through bulk solutions is 
usually  described very well by a resistor in parallel with a capacitor—that is to say, by Ohm’s 
law and an electrostatic field—at least in the 100 mM NaCl solutions for the voltages and time 
scales typical of life. For example, current voltage relations of ion channels are simple, 
reproducible, and follow definite laws, which seem to be device equations much like those used 
by engineers to characterize transistors.  

The challenge is to derive the ‘laws’ and device equations that characterize these simple behaviors 
using only mathematics, starting from an atomic description of the trajectories of ions in water and proteins. 

I propose to simplify the problem dramatically to focus on its mathematical essence, using 
simplifications already widely applied in physical chemistry and biophysics with some success, 
even though the simplifications have not yet been derived in a way that most mathematicians 
would call satisfactory. Specifically, physical chemistry has shown that equilibrium properties of 
ionic solutions can be described over an enormous range of concentrations without detailed 
consideration of the properties of water or the chemical interactions of water and ions 



(specifically, without delocalization of the orbitals of electrons of water and ions is not involved) 
(Durand-Vidal, Turq et al. 1996; Simonin, Blum et al. 1996; Barthel, Krienke et al. 1998; 
Durand-Vidal, Simonin et al. 2000; Fawcett 2004) and I propose to use such implicit solvent (so-
called ‘primitive’) models of ionic solutions and extend them to include the dynamics of ion 
transport in bulk and channels. Water will be treated as a uniform dielectric with the dielectric 
coefficient of the bulk solution (not the dielectric coefficient of bulk water). This approach has 
been used to calculate ion selectivity in channels with some success (Nonner, Chen et al. 1998; 
Nonner and Eisenberg 1998; Nonner, Catacuzzeno et al. 2000; Nonner, Catacuzzeno et al. 2000; 
Nonner, Gillespie et al. 2001; Boda, Busath et al. 2002; Gillespie, Nonner et al. 2002; Gillespie, 
Nonner et al. 2002; Eisenberg 2003; Gillespie, Nonner et al. 2003; Boda, Gillespie et al. 2004; 
Nonner, Peyser et al. 2004) and actually to build a calcium selective channel designed by theory 
(Miedema, Meter-Arkema et al. 2004) 

Trajectories of ions could be treated in two traditions (that I know of), namely that of 
Boltzmann transport theory and that of the Langevin equation. I am hardly familiar with the first, 
and am concerned about its mathematical foundations, compared to the solid foundations of the 
theory of stochastic differential equations, and so I propose that we work on trajectories defined 
by the full Langevin equation, in which forces are computed self-consistently, i.e., by solving 
Poisson’s equation involving the location of the charges transported by the Langevin equation. 
Such problems have already been formulated and put in the context of the traditional theory of 
ions in solutions and channels (Nadler, Naeh et al. 2001; Schuss, Nadler et al. 2001; Schuss, 
Nadler et al. 2002; Nadler, Schuss et al. 2003; Nadler, Schuss et al. 2004; Singer, Schuss et al. 
2004; Schuss, Nadler et al. 2004; Nadler, Schuss et al. 2005).  

Analysis of these systems is now needed and that is what I propose. I think if we learn to 
‘count’ Langevin trajectories, we will be able to count trajectories with more general properties. 
Or to put it more formally, I propose we construct probability measures that estimate the number density 
and flux in a coupled Langevin-Poisson system and then generalize those measures to more general 
trajectories and (most importantly) to trajectories determined by the simulations of molecular 
dynamics. 

Our first goal will be to write the coupled Langevin and Poisson equations neatly, in 
dimensional and dimensionless form, showing the different scales of the system. Care should be 
taken to investigate many different possible scales and combinations of scales since each 
combination is likely to describe a different ‘simplified’ system already known to 
experimentalists, in some area or other. 

Our second goal will be to seek systematic approximations taking advantage of the 
enormous difference in scales between the electrostatic force and the diffusion ‘force’ and the 
fluxes they drive.  

Our third goal will be to solve these equations in the presence of spatially nonuniform 
boundary conditions for the electric field and for the average density of ions. These boundary 
conditions describe the classical concentration cell used by electrochemists for some 150 years, 
since Faraday, and by biophysicists to study ion channels since Hodgkin and Huxley, working in 
Cambridge and Plymouth (UK) some 60 years ago. 

Our fourth goal will be to solve these equations in the presence of a background of immobile 
charge and thus to describe (simultaneously) ion channels. We aim for a simple nearly analytical 
treatment of ion channels, and that may also prove to be a useful, if primitive description of 
transistors, as well. 

Our final goal will be to include an additional equation that describes motion of parts of the 



protein, thus developing a theory of conformation change in proteins and enzymes, as well as 
channels. Channels perform many of their functions without changing conformation. Most 
proteins, however, change conformation dramatically as they do their work. Neither simulations 
nor theory have been successful in describing conformation changes. 
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