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1 Introduction

A large number of bone-grafting procedures are performed annually to repair
diseased bones and bone loss caused by fractures and cancers. Whilst sur-
geons prefer to use autografts (the patient’s own bone), these may be limited
in availability and can result in donor-site morbidity (damage at the site from
which the graft is removed). Allografts (bone from cadavers) are also limited
in availability, incorporate less well into existing bone, and may have impaired
structural strength [1–4]. There is therefore interest in alternative materials for
skeletal repair; these need to have appropriate structural properties, and it is
desirable that they also encourage the formation of new bone and the regener-
ation of the patient’s original tissue. One possibility is to culture suitable cells
(e.g. mesenchymal stem cells) within the scaffold; when implanted, these may
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Figure 1: Schematic diagram of a hollow fibre membrane bioreactor. The hollow
fibres (narrow cylinders) can be seen to run through the scaffold (wide cylinder);
note that the small number of fibres depicted here are merely representative of
the large number (∼ 200) in the current design. Nutrient medium is made to flow
down the lumens of the fibres, this fluid being supplied at the inlet and removed
at the outlet.

differentiate into bone-forming cells (osteoblasts) and may also generate extra-
cellular matrix components and diffusible signalling molecules that recruit the
patient’s own cells to colonise the scaffold and generate bone tissue.

Cell growth within a tissue-engineering scaffold is limited by the supply of
nutrients and oxygen, and the removal of waste products. The dominant trans-
port mechanism in a scaffold is diffusion, and cells in a tissue mass supplied
by this route are only viable within ∼ 100 µm of sources of oxygen and glu-
cose. Implants for skeletal repair need to be thicker than this, so hollow fibre
membrane bioreactors (HFMBs) have been developed to overcome this restric-
tion. These consist of a scaffold in which many small, semi-permeable hollow
fibres are embedded, mimicking the capillary networks found tissues such as
bone. Culture medium containing nutrients is made to flow through the fibres,
so nutrients and waste products need only diffuse the small distance from/to
the nearest fibre, rather than to the outside of the implant.

The aim of this study-group problem is to investigate the transport and
kinetics of nutrients within HFMBs. The problem presenters wish to increase
the scale of the bioreactor and are keen to understand which combinations of
quantities (dimensionless groups) affect the nutrient transport problem.

2 Hollow fibre membrane bioreactors

The current design of the HFMB is shown in Figure 1. Cells are distributed
(initially relatively uniformly) in a scaffolding material; at present, this is an
agarose gel that allows the diffusion of oxygen, nutrients and waste products
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Figure 2: Geometry of the Krogh cylinder. Each cylinder contains a hollow
fibre, with 0 < r < a being the lumen and a < r < a + m the membrane, and an
annular region a + m < r < A of scaffolding material (agarose gel) in which cells
are present.

but does not permit a bulk flow of fluid. Approximately 200 hollow fibres (HFs)
run through the scaffold. These are hollow tubes with an internal diameter
of 200 µm, and are constructed from a 20 µm thick membrane which permits
the diffusion of substances of up to 10 kDa in molecular weight. The HFs are
approximately parallel and equally spaced in the HFMB, and run between two
end plates. The HFs and scaffold are contained within a sealed module, with
inlets and outlets through which nutrient medium is pumped. This fluid flows
along the lumens of the HFs, and nutrients such as glucose and oxygen diffuse
out through the membranes and into the scaffold. Conversely, waste products
diffuse into the lumens of the HFs and are removed through advection.

The cells are cultured in this system for approximately one month. The
total cell number drops rapidly near the start of the experiment (possibly due
to damage sustained during the fabrication of the scaffold), but subsequently
increases to approximately 20% more than its starting value. In order for the
cells to be viable in the HFMB, it is important that local nutrient levels lie
within an appropriate range. It is also desirable that the final implant contains
a roughly uniform distribution of cells; depending on the sensitivity of cell ki-
netics to nutrient concentrations this may further limit acceptable variations in
nutrient concentration levels.

We now examine nutrient transport within the HFMB. The intent of this
calculation is to quantify how the nutrient concentration in the scaffold (in par-
ticular, its spatial variations) depends on the parameters of the problem. Whilst
there will be an initial transient period (during which the nutrient diffuses
into those regions furthest from the HFs), the timescale of this (O(A2/Ds) ∼
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1 − 10 min, see Table 1) is much shorter than both the duration of the experi-
ments (28 days) and the time-scale on which the cell density may vary (a typical
cell-cycle duration being 1 day). As a consequence we will consider the nutrient
concentration to be at a steady-state.

Ideally, the fibres in the HFMB would be exactly parallel and uniformly
spaced, but limitations of the manufacturing process mean that there is always
some variation in their positions. Whilst it would be possible to solve the trans-
port problem numerically in the precise geometry (reconstructed from sections
of the HFMB, or using tomography), this would be computationally expensive
and give limited physical insight.

Instead, we will adopt the Krogh cylinder approximation [5] (see the re-
view [6, 7]); this assumes that the HFMB is composed of numerous identical
cylindrical regions (one of which is shown in Figure 2) with impenetrable outer
boundaries. We further assume that the nutrient concentrations in each cylin-
der are axisymmetric, depending only on the distance from the mid-line of the
cylinder, r, and the axial distance, z. The Krogh cylinder or “tissue cylinder”
approximation is valid in the case of isotropic passive diffusion of solutes in
the scaffold and describes a representative average unit of the metabolic ex-
change [8, 9].

While the radius of a representative Krogh cylinder has been measured ex-
perimentally (A ≃ 0.32 mm, see Table 1), we can obtain an estimate using the
given number of fibres (N = 200) and the outer diameter of the bioreactor
(2R0 = 13 mm) [10]. A rough area-based estimate is πR2

0 = NπA2, in which
case

A =
R0√
N

≃ 0.5 mm.

We can also estimate of the Krogh cylinder radius from the the experimental
protocol used to form a hexagonal array. We start from a single fibre in the
centre and place six equispaced fibres at the fixed distance d. Then we add
12 new fibres on a concentric circle of radius 2d, etc. until we fill the whole
bioreactor (see Fig. 3). From the geometrical design of the array, we can see

d

Figure 3: An approximation of the hexagonal array of fibres in the HFMB.

that the number of fibres on each circle constitutes an arithmetical progression
with a1 = 6, ap = 6p, where p is the number of concentric circles. Therefore, the
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total number of the fibres is N = 1 + 6p(p + 1)/2 so 2p ≃ −1 +
√

(4N − 1)/3.
Since the outer radius R0 = p d and the distance between the centres of two
adjacent fibres d = 2A, we estimate the Krogh cylinder radius to be

A =
R0

√

(4N − 1)/3 − 1
≃ 0.4 mm .

For both these estimates, the radius of the Krogh cylinder decreases as 1/
√

N
for large N , and so halving the radius requires four times as many fibres.

2.1 Formulation

In this section we consider the concentration, c, of a substance which may
be either glucose or oxygen; whilst the uptake rates and diffusion coefficients
of these two substances differ, the transport problem takes the same form in
either case. Within the lumen of the HFs (0 < r < a) the nutrient diffuses
with diffusion coefficient Dl and is advected by the flow. At the relatively low
Reynolds numbers under consideration here (Re = Ua/ν ≃ 0.75, see Tables 1
and 2), the entry length is a small fraction of the tube diameter; as the aspect
ratio of the fibres is small we will assume that the flow within the lumen is fully
developed Poiseuille flow (the axial velocity, u, being u = 2U0(1 − r2)). Note
that, as we believe the permeability of the membrane (in the porous medium
sense) to be very small, we impose no-slip conditions on the flow at the lumen-
membrane boundary (rather than those of Beavers and Joseph [11]).

In the membrane (a < r < a + m) and the scaffold (a + m < r < A),
the sole transport mechanism is diffusion, with diffusion coefficients Dm and
Ds in each medium, respectively. At each interface between media we require
continuity of the concentration, c, and the normal diffusive flux, −D∂c/∂r,
and on the outer boundary of the Krogh cylinder we require that the normal
flux vanishes. We assume that there is a constant number density of cells,
n, throughout the scaffold, and that the nutrient uptake rate of each cell is
either proportional to the concentration of nutrients (first-order kinetics, with
constant of proportionality k1) or constant (zeroth-order kinetics, with k0 being
the uptake rate). Note that if the uptake rates for the two choices of kinetics
are to agree at a concentration C, then k0 = Ck1.

For first-order cell kinetics, the dimensional form of the nutrient transport
problem (assuming no dependence on the azimuthal variable) is

2U0(1 − r2)
∂c

∂z
= Dl

(

1

r

∂

∂r

(

r
∂c

∂r

)

+
∂2c

∂z2

)

, 0 < r < a, (1a)

Dm

(

1

r

∂

∂r

(

r
∂c

∂r

)

+
∂2c

∂z2

)

= 0, a < r < a + m,

(1b)

Ds

(

1

r

∂

∂r

(

r
∂c

∂r

)

+
∂2c

∂z2

)

= k1nc, a + m < r < A,

(1c)

in 0 < z < L. The boundary conditions on this advection-diffusion problem
are that the nutrient concentration at the inlet of the lumen is C0, and that
the boundaries between the membrane or scaffold and the outside of the Krogh
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cylinder are impermeable. In order for this problem to be mathematically well-
formulated, we need to also impose suitable boundary conditions (zero axial
derivative) on the nutrient concentration at the outlet of the lumen. Along with
continuity of concentrations and diffusive fluxes at interfaces between media,
these conditions become

on z = 0, 0 < r < a, c = C0,

on z = 0, a < r < A,
∂c

∂z
= 0,

on z = l, 0 < r < A,
∂c

∂z
= 0,

at r = 0,
∂c

∂r
= 0,

at r = a, Dl
∂c

∂r

∣

∣

∣

∣

a−

= Dm
∂c

∂r

∣

∣

∣

∣

a+

, c|a− = c|a+ ,

at r = a + m, Dm
∂c

∂r

∣

∣

∣

∣

(a+m)−

= Ds
∂c

∂r

∣

∣

∣

∣

(a+m)+

, c|(a+m)− = c|(a+m)+ ,

at r = A,
∂c

∂r
= 0.

Here c
∣

∣

a−
denotes the limiting value of the concentration as we approach the

lumen-membrane boundary (r = a) from the lumen (r < a), whilst c
∣

∣

a+
denotes

the limit as we approach the boundary from the membrane (r > a), and similarly
for the other interfaces. For zeroth-order kinetics, equation (1) in the scaffold
is replaced by

Ds

(

1

r

∂

∂r

(

r
∂c

∂r

)

+
∂2c

∂z2

)

= k0n, a + m < r < A.

Estimates of the dimensional parameters for the current design of the HFMB
are listed in Table 1.

2.2 Non-dimensionalisation

We rescale the variables of the problem according to

u = U0û, c = C0ĉ, r = ar̂, z = lẑ,

where U0 is the average axial flow velocity along the lumens. On dropping hats,
the problem in the Krogh cylinder becomes

Pe(1 − r2)
∂c

∂z
=

1

r

∂

∂r

(

r
∂c

∂r

)

+ ǫ2
∂2c

∂z2
, 0 < r < 1, (2a)

1

r

∂

∂r

(

r
∂c

∂r

)

+ ǫ2
∂2c

∂z2
= 0, 1 < r < 1 + δ, (2b)

1

r

∂

∂r

(

r
∂c

∂r

)

+ ǫ2
∂2c

∂z2
= Da c, 1 + δ < r < R, (2c)

6



Parameter Value Reference

Fibre inner radius (a) 1.0 × 10−4 m [12]

Fibre membrane thickness (m) 2.0 × 10−5 m [12]

Krogh cylinder radius (A) 3.2 × 10−4 m [12]

Fibre length (l) 3.0 × 10−2 m [12]

Average axial flow velocity (U0) 0.745× 10−2 m/s [12]

Fluid kinematic viscosity (ν) ∼ 10−6 m2/s

Diffusivity of glucose in the lumen (D
(g)
l ) 0.54 × 10−9 m2/s [10, 12]

Diffusivity of oxygen in the lumen (D
(o)
l ) 3.0 × 10−9 m2/s [10, 12]

Diffusivity of glucose in the membrane (D
(g)
m ) 0.54 × 10−10 m2/s [10, 12]

Diffusivity of oxygen in the membrane (D
(o)
m ) 3.0 × 10−10 m2/s [10, 12]

Diffusivity of glucose in the scaffold (D
(g)
s ) 1.08 × 10−10 m2/s [10, 12]

Diffusivity of oxygen in the scaffold (D
(o)
s ) 6.0 × 10−9 m2/s [10, 12]

Inlet concentration of glucose (C
(g)
0 ) 5.55 mol/m3 [12]

Inlet concentration of oxygen (C
(o)
0 ) 0.22 mol/m3 [12]

Cell seeding density (n) 2.0 × 1012 cells/m3 [12]

Glucose uptake rate per cell (k
(g)
0 ) 3.83 × 10−16 mol cell−1 s−1 [12]

Oxygen uptake rate per cell (k
(o)
0 ) 3.75 × 10−17 mol cell−1 s−1 [12]

Glucose consumption 1.38 × 10−4 s−1

rate coefficient (n k
(g)
1 = n k

(g)
0 /C

(g)
0 )

Oxygen consumption 3.41 × 10−4 s−1

rate coefficient (n k
(o)
1 = n k

(o)
0 /C

(o)
0 )

Glucose degradation rate ∼ 10−5 − 10−4 s−1 [13]

in the water/acidic environment

Table 1: Dimensional parameter values used in the model.
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with boundary and continuity conditions

at z = 0, 0 < r < 1, c = 1, (3a)

on z = 0, 1 < r < R,
∂c

∂z
= 0, (3b)

on z = 1, 0 < r < R,
∂c

∂z
= 0, (3c)

at r = 0,
∂c

∂r
= 0, (3d)

at r = 1,
∂c

∂r

∣

∣

∣

∣

1−

= D∗

m

∂c

∂r

∣

∣

∣

∣

1+

, c|1− = c|1+ ,

(3e)

at r = 1 + δ, D∗

m

∂c

∂r

∣

∣

∣

∣

(1+δ)−

= D∗

s

∂c

∂r

∣

∣

∣

∣

(1+δ)+

, c|(1+δ)− = c|(1+δ)+ ,

(3f)

at r = R,
∂c

∂r
= 0. (3g)

The dimensionless parameters are the aspect ratio of the fibre lumen, ǫ, the
dimensionless membrane thickness, δ, the normalised diffusion coefficients, D∗

m

and D∗

s , the dimensionless Krogh cylinder radius R, the (reduced) Péclet num-
ber, Pe, and the Damköhler number, Da, defined by

ǫ =
a

l
, δ =

m

a
, D∗

m =
Dm

Dl
, D∗

s =
Ds

Dl
, R =

A

a
,

Pe =
2U0l

Dl

a2

l2
, Da =

k1na2

Ds
.

The Péclet number relates advection of nutrient along the lumen to diffusion
across its radius, whilst the Damköhler number relates the uptake rate of nu-
trients to the time taken for them to diffuse (radially) across the scaffold. For
zeroth-order kinetics we have

1

r

∂

∂r

(

r
∂c

∂r

)

+ ǫ2
∂2c

∂z2
= Da0, 1 + δ < r < A, (4)

instead of (2c), where the Damköhler number is now taken to be

Da0 =
k0na2

DsC0
.

Estimates of the dimensionless parameters, based on the data of Table 1, are
presented in Table 2. For the current choice of dimensional parameters Da can
be seen to be very small, in which case we expect uptake by the cells to have
a minimal effect on the concentration of nutrients in the bioreactor (we will see
in §2.6 that R2Da is the important combination of dimensionless parameters).
However, Da can be increased by increasing the cell seeding density, n, or the
nutrient uptake rate, k1, and it is conceivable that these could be somewhat
larger in practice than the current estimates. Alternatively, if the estimates
for the cell density and uptake rate are roughly correct, the HFs are perhaps
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unnecessarily closely spaced; the (overall) diameter of the bioreactor could be
increased, or the number of fibres decreased (until R2Da is no longer small). In
the numerical solutions considered later (Figures 5–10), we will consider larger
values for Da (Da = 0.1, 0.3 or 1).

Parameter Symbol Value

Fibre (lumen) aspect ratio ǫ 3 × 10−3

Dimensionless membrane thickness δ 0.2

Dimensionless Krogh cylinder radius R 3.2

Normalised diffusivity in the membrane D∗

m 0.1

Normalised diffusivity in the scaffold D∗

s 0.2

Péclet number for glucose Pe(g) 9.2

Péclet number for oxygen Pe(o) 1.7

Damköhler number for glucose Da(g) 1.3 × 10−2

Damköhler number for oxygen Da(o) 0.57 × 10−2

Reynolds number (based on lumen diameter) Re 0.75

Table 2: Non-dimensional parameter values.

The aspect ratio ǫ is small, and in the subsequent analysis we will neglect
all terms of O(ǫ) or smaller, which is equivalent to ignoring diffusive transport
in the axial direction. (We also ignore the boundary conditions (3b) and (3c),
which will generate boundary layers of thickness O(ǫ) near z = 0 and z = 1.) As
the Péclet number, Pe, is large and the Damköhler number, Da, small, it would
be consistent to also neglect terms of O(Da) and O(1/Pe); however, this would
give us that the concentration everywhere is to leading-order the same as that at
the inlet. We wish to quantify the variations in the nutrient concentrations, and
so retain these terms. Note that, for any practical HFMB, Da will be at most
O(1) in size (and is likely to be small), otherwise the nutrient concentration will
decay significantly away from the fibres and cells will not be viable except in
small regions near them.

2.3 First-order kinetics

We now consider the solution of (2) for first-order cell kinetics. The solution
within the membrane (1 < r < 1 + δ) is

c = c
∣

∣

1−
+

1

D∗

m

∂c

∂r

∣

∣

∣

∣

1−

log r, (5)

using (3e), continuity of concentration and flux at the lumen-membrane bound-
ary r = 1. On applying the conditions (3f) at the membrane-scaffold interface
(r = 1 + δ), we obtain jump conditions relating the concentration and fluxes
at the inner boundary of the scaffold with those at the outer boundary of the
lumen, namely

c
∣

∣

1+δ+
= c
∣

∣

1−
+

log(1 + δ)

D∗

m

∂c

∂r

∣

∣

∣

∣

1−

, (6)
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Figure 4: Krogh cylinder problem (in dimensionless variables) in the small
aspect ratio (ǫ ≪ 1) limit. The outer radius r = R is indicative of the spacing
between fibres (relative to the diameter of the fibres). The conditions shown on
the right are that the normal diffusive flux is continuous at interfaces between
media; c itself is continuous throughout the cylinder.

∂c

∂r

∣

∣

∣

∣

1+δ+

=
1

D∗

s

1

1 + δ

∂c

∂r

∣

∣

∣

∣

1−

. (7)

The solution to (2c) is a linear combination of the modified Bessel functions

K0(rDa1/2) and I0(rDa1/2). The condition (3g) at r = R requires the gradient
be zero there, and on imposing (6) we find that

c =

(

c
∣

∣

1−
+

log(1 + δ)

D∗

m

∂c

∂r

∣

∣

∣

∣

1−

)

×
(

K0(rDa1/2)I ′0(RDa1/2) − K ′

0(RDa1/2)I0(rDa1/2)

K0((1 + δ)Da1/2)I ′0(RDa1/2) − K ′

0(RDa1/2)I0((1 + δ)Da1/2)

)

(8)

within the scaffold (1 + δ < r < R). Applying (7) then gives
(

1 − log(1 + δ)

D∗

m

D∗

s(1 + δ)Da1/2κ

)

∂c

∂r

∣

∣

∣

∣

1−

= D∗

s(1 + δ)Da1/2κc
∣

∣

1−
, (9)

a Robin boundary condition upon the nutrient concentration in the lumen (0 <
r < 1), where

κ =
K ′

0((1 + δ)Da1/2)I ′0(RDa1/2) − K ′

0(RDa1/2)I ′0((1 + δ)Da1/2)

K0((1 + δ)Da1/2)I ′0(RDa1/2) − K ′

0(RDa1/2)I0((1 + δ)Da1/2)
. (10)

Once the solution has been found in the lumen, the solution elsewhere is given
by (5) for 1 < r < 1+δ and (8) for 1+δ < r < R. (Note that this simplification
is only valid when the cell density in the scaffold is uniform.)

The problem in the lumen is

Pe(1 − r2)
∂c

∂z
=

1

r

∂

∂r

(

r
∂c

∂r

)

, (11)
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with boundary conditions

c = 1 at z = 0, (12a)

∂c

∂r
= 0 at r = 0, (12b)

∂c

∂r
= −λc at r = 1, (12c)

where the constant λ is given (with κ from (10)) by

λ =
D∗

sD∗

m(1 + δ)Da1/2κ

log(1 + δ)D∗

s(1 + δ)Da1/2κ − D∗

m

. (13)

We solve (11)–(13) numerically by first replacing derivatives with respect to r
by central differences in space, and then solving the resulting system of ordinary
differential equations in z using the MATLAB routine ode15s. These numer-
ical solutions are shown in Figure 5 for a number of different choices for the
dimensionless parameters, where we also plot the solutions (5) and (8) in the
membrane and the scaffold. Figure 6 shows the radial profiles of the solutions
at the outlet end of the bioreactor (z = 1), where the concentrations are small-
est; this clearly shows the dependence on the parameters Pe (i.e. the speed at
which nutrients are pumped through) and Da (i.e. the rate at which they are
consumed by the cells).

It is worth simplifying the problem in the limit where R2Da and δ are both
small (the former condition being that the radius of the Krogh cylinder is small

relative to the length-scale on which the nutrient concentration decays, Da−1/2).
In this case,

κ ∼ − (R2 − 1)Da1/2

2

and

λ ∼ D∗

sDa

2
(R2 − 1).

Here Da(R2 − 1)/2 is the total nutrient uptake rate of the cells in the annular
scaffold region (per unit azimuthal angle), so the boundary condition (12c) is
easily understood as a requirement that the flux out of the lumen be equal to
the cross-sectionally integrated consumption rate in the scaffold. The ratio D∗

s

appears because of the different diffusion coefficients within lumen and scaffold.
By expanding the Bessel functions for small argument, the solution (8) in the
scaffold can be written as

c(z, r) ∼ c(z)
∣

∣

1−

[

1 − δ

D∗

m

D∗

sDa

2
(R2 − 1) − R2Da

2
log r

]

. (14)

We retain the term containing δ/D∗

m because the normalised diffusion coefficient
in the membrane, D∗

m, may be of comparable size to δ. This term supplies the
jump in concentration between the outer boundary of the lumen and the inner
boundary of the scaffold, which is clearly apparent in the solutions of Figure 6.
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Figure 5: Nutrient concentration, c, in the Krogh cylinder, obtained from nu-
merical solution of the problem (11)–(12) in the fibre lumen and from (5) and (8)
in the membrane and scaffold, respectively. The variables are all dimensionless:
the radial variable, r, scaled with the radius of the lumen, the axial distance, z,
scaled with the the length of the bioreactor and the nutrient concentration, c,
scaled with that at the inlet. Discontinuities in the concentration gradient can
be observed at the lumen-membrane (r = 1) and membrane-scaffold (r = 1 + δ)
boundaries. The outer (Krogh) radius is R = 3.2. (a) Here Pe = 10 and Da = 0.1,
as may be roughly appropriate for the current bioreactor. (b) As in (a), but with
reduced Péclet number Pe = 1, Da = 0.1. (c) As in (a), but with increased
Damköhler number Pe = 10, Da = 1. (d) As in (a) (Pe = 10, Da = 0.1), but
with the outer radius at R = 5, corresponding (for a lumen radius of 100 µm)
to a Krogh cylinder radius of 500 µm. The colours indicate the same nutrient
concentration in all plots.
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Figure 6: Concentration of nutrient c at z = 1 (outlet end of bioreactor) from
numerical solutions of (11)–(12) in the lumen, and (5) or (8) elsewhere. The
left-hand plot shows solutions with Da = 0.1 and Pe = 1 or Pe = 10, and the
right-hand plot shows solutions with Pe = 10 and Da = 0.1 or Da = 0.3. Vertical
dashed lines indicate the position of the membrane.
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Figure 7: Comparison of solutions at z = 1 for first order kinetics (reaction
rate linear in concentration) and zeroth-order kinetics (reaction rate constant).
As in Figure 6, with the Péclet number Pe = 10 and the Damköhler number 0.1
in each case (Da = 0.1 or Da0 = 0.1).
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2.4 Zeroth-order kinetics

For zeroth-order kinetics, the solution of (4) in the scaffold is

c =

Da0

2

[

r2 − (1 + δ)2

2
− R2 (log r − log(1 + δ)) − log(1 + δ)

D∗

m

D∗

s

(

R2 − (1 + δ)2
)

]

+c
∣

∣

1−
,

(15)

and the solute concentration in the fibre membrane is

c = − D∗

s

D∗

m

Da0

2

[

R2 − (1 + δ)2
]

log r + c
∣

∣

1−
. (16)

The boundary condition (12) for the system (11)–(12) now becomes

∂c

∂r

∣

∣

∣

∣

1−

= −λ0 , (17)

where

λ0 = D∗

s

Da0

2

[

R2 − (1 + δ)2
]

.

Again, the problem in the lumen must be solved numerically, and once this is
done the solutions in the scaffold and membrane are given by (15) and (16),
respectively.

A comparison of the solutions for first- and zeroth-order kinetics is shown in
Figure 7, where we see that more nutrient is consumed in the zeroth order case.
This is expected since the consumption rate does not decrease as the amount of
nutrient decreases as in the first-order case.

2.5 Analytical approximation

In Figure 5, the concentration appears to be relatively uniform in the cross
section of the cylinder. If we assume that c in the lumen is independent of r,
then integrating over its cross section gives

Pe

4

∂c

∂z
=

∂c

∂r

∣

∣

∣

∣

1−

− ∂c

∂r

∣

∣

∣

∣

0+

= −λc,

where the boundary contributions come from (12b)–(12c), λ being defined in
(13). The solution to this is

c = e−4λz/Pe, (18)

giving the approximate solution in the fibre lumen, and from (5) and (8), the
approximate solutions in the other regions are

c(z, r) = e−4λz/Pe

(

1 − λ

D∗

m

log r

)

(19)
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Figure 8: Comparison of numerical solutions of the Krogh cylinder problem
((11)–(12) in the lumen, and (5) or (8) elsewhere) and the approximate analyt-
ical solutions (18)–(20), at the outlet end of the HFMB (z = 1) for different
values of the Péclet number, Pe, and the Damköhler number, Da. The smallest
concentration, occurring at r = R, appears to be reasonably well approximated.

in the membrane (1 < r < 1 + δ) and

c(z, r) = e−4λz/Pe

(

1 − λ

D∗

m

log(1 + δ)

)

×

K0(rDa1/2)I ′0(RDa1/2) − K ′

0(RDa1/2)I0(rDa1/2)

K0((1 + δ)Da1/2)I ′0(RDa1/2) − K ′

0(RDa1/2)I0((1 + δ)Da1/2)
, (20)

in the scaffold (1 + δ < r < R). This approximation is compared with the
numerical solution of the (small aspect ratio) Krogh cylinder problem ((11)–(12)
in the lumen, and (5) or (8) elsewhere) in Figure 8, where the radial profiles
are compared at the outlet end of the bioreactor (z = 1). The approximation
gives an acceptable prediction of the minimum concentration at r = R and the
profile in the scaffold. The approximation works particularly well if Pe is either
large or small, because in these cases the profile in the lumen is close to being
flat.

2.6 Concentration variations

We are interested in quantifying the variations in concentration within the biore-
actor, and are therefore particularly interested in the minimum value, which will
occur at the point furthest from the inlet and the fibre, namely z = 1, r = R (see
Figure 5). It is evident from (2) that this minimum concentration can depend
only on the 6 dimensionless parameters R, Pe, Da, D∗

m, D∗

s and δ. When δ is
small it is only important in combination with D∗

m; δ/D∗

m gives the jump in c
across the membrane. We will assume for the purposes of discussion that D∗

s

and D∗

m (the ratios of diffusion coefficients in membrane and scaffold to that
in the lumen) are fixed, along with the thickness of the membrane, δ. We can
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Figure 9: Minimum values of the nutrient concentration (relative to c = 1 at
the inlet), which occurs at z = 1, r = R. These values are calculated from the
numerical solution of the (small aspect ratio) Krogh cylinder problem. In each
plot, two out of the three parameters R, Pe and Da are varied and the other fixed
(at R = 3, Da = 0.04 or Pe = 10).

then consider how the solutions depend on the remaining three parameters R,
Da and Pe. Physically this corresponds to varying the spacing of fibres, the
nutrient uptake rate or the density of cells, and the length of the bioreactor or
the nutrient flow speed. Figure 9 shows how the minimum value of c (again,
obtained from the numerical solution of the Krogh cylinder problem) varies as
a function each pair of these parameters while holding the other one fixed. If
an allowable tolerance for the concentration variations is decided on, it is easy
to read off the appropriate range of dimensionless parameters which can then
be converted to the physical parameters of the experiment.

However, in the limit in which R2Da is small, the solutions depend on R and
Da only through this combination (this is evident from the asymptotic forms
for λ (14) and c in the scaffold (14)). This limit is of practical importance, as
it corresponds to situations where the radial decay in concentration is small. In
Figure 10, we plot the minimum value of c as a function of the two parameters
Pe and R2Da.

3 Conclusions and further work

In this report, we examined nutrient transport in a HFMB using the Krogh
cylinder approximation to simplify the geometry of the problem. Seven di-
mensionless parameters governing nutrient transport were identified in §2.2 (see
Table 2; note that the flow in the lumens will be Poiseuille provided that the
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Figure 10: Minimum values of the nutrient concentration (c = 1 at inlet),
which occur at z = 1, r = R, in terms of the two dimensionless numbers R2Da
and Pe on which the solutions depend for small R2Da. If the allowable variation
in concentration is between 70–100% of the inlet concentration, for instance, the
values of the dimensionless parameters should be kept below the 0.7 curve, by
designing the physical parameters of the bioreactor appropriately. It should be
noted that the solutions start to depend independently on R and Da when R2Da
is no longer small, and Figure 9 should then be referred to.

Reynolds number is not large, so this parameter does not affect the transport
problem). For the current design, the aspect ratio of the fibres, ǫ, (and that of
the Krogh cylinder, ǫR) is small, so we simplified the problem by ignoring axial
diffusion. Further assuming the solution in the Krogh cylinder to be axisymmet-
ric, we reduced the three-dimensional transport problem in multiple materials
to a two-dimensional problem in the fibre lumen that was straightforward to
solve numerically (§§2.3–2.4). We also examined (§2.5) the (somewhat heuris-
tic) approximation in which the concentration within the lumen is assumed to
be uniform in each cross section. We obtained analytical expressions for the
concentration, and confirmed numerically (Figure 8) that these gave reasonable
approximations to the concentration variations in the scaffold of the HFMB.

Assuming that the cross-sectional geometry of the hollow fibres and the
material properties of the membrane and scaffold could not be readily modified
left us with three dimensionless parameters, R, Pe and Da, which could be
varied by changing the fibre spacing, bioreactor length, flow rate in the fibres
and cell density. In §2.6, we examined numerically how these three parameters
affected the variation in nutrient concentration in the HFMB. In the limit where
radial variation was small (R2Da ≪ 1), the minimum concentration was found
to depend on just two combinations of these parameters; therefore, if only small
variations are acceptable, it is relatively simple to determine the appropriate
range of physical parameters for the bioreactor design from Figure 10.

The presented analysis is equally applicable to the evacuation of cells’ waste
products (e.g. CO2 and lactic acid) from the scaffold. It seems reasonable
to assume zeroth-order kinetics for waste production cw: Ds∇2cw = −kp(c)n,
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where the production rate kp may depend on the nutrient concentration c. For
constant production rate, the concentration profiles would be the inverse of
those shown in Figure 7, with the maximum concentration being at the outer
edge of the Krogh cylinder.

The current model predicts nutrient variations in the HFMB for a given
uniform distribution of cells. In practice, the local number density of cells will
vary over the course of the experiment. Cell kinetics (death and division rates)
may depend on the local concentrations of nutrients and waste products, in
which case the distribution of cells will become non-uniform, and this process
could be self-reinforcing in some circumstances. In order to include such effects,
the cell number density, n, needs to be treated as a dependent variable of the
system; we expect that it will be governed by an equation of the form

∂n

∂t
= µ∇2n + R(c, n),

where µ is the random motility of the cells (which may be small in practice) and
the kinetic term, R(c, n), includes the effects of cell proliferation and death. The
form of R and its sensitivity to changes in cell density and nutrient concentra-
tions are important, and it is likely that further experiments (cell proliferation
assays) would be necessary to determine these.

Whilst the current scaffolding material is not observed to degrade over the
course of the experiments, this may be significant for future versions of the
design, and it is also possible that the cells may generate extracellular matrix
proteins; both of these processes could affect the diffusion coefficient in the
scaffold. However, unless the cell density becomes very large, we expect that
nutrient transport through cells will only have a small effect on the bulk diffusion
coefficient of the scaffold (the relative change being proportional to the volume
fraction occupied by the cells [14]).

In conclusion, we have identified nutrient diffusion in the scaffold as the
main limitation in transporting nutrients to cells; the further apart the fibres
are placed the more variable the nutrient concentration within the scaffold will
be. For the current operating regime, our model predicts that variations in
concentration within each cross section will be much greater than those along
the axis of the bioreactor. Whilst the maximum variation is expected to be
small, this may become more substantial if the cell density is increased.

We have established a suitable model with which to predict variations in nu-
trient concentration and it is relatively straightforward to extend this to account
for changes in cell density over time. To understand the effect of concentration
variations on the distribution of cells in the HFMB, more data is required on
the sensitivity of cell kinetics to nutrient concentrations. Through examining
the time-dependent behaviour of the cell density (coupled to the nutrient con-
centration), and requiring the density at the end of the culture to be sufficiently
uniform (for the implant to be useful medically), it may be possible to estimate
practical bounds on allowable nutrient concentration variations.
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