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1 Introduction

In some biological systems, because the binding of certain ligands to tissue receptors
results in an undesirable signal, false ligands are produced (in addition to ligands)
which can also bind to receptors, thus blocking them and preventing signalling. To
this system we may add a drug in the form of an antibody, which is also capable of
binding to the receptor and blocking ligand binding. Of interest is the reduction in
such bindings that can be achieved, in order to minimise the subsequent signalling.
All the reactions are reversible, with the system potentially in a continuous state of
flux.

The question we address here is whether it is beneficial for the antibody to block
both ligand and false ligand binding, or whether it should allow false ligands to con-
tinue to bind. Type 2 antibodies (the second form of action) have the advantage that
receptors may be blocked in two ways, with both the false ligand and the receptor
binding needing to first be reversed before a ligand binding can take place. Type 1 an-
tibodies (the first form of action) have the advantage that more false ligands are kept
free in the system to bind to any remaining unbound receptors.

Given that the system is flooded with antibodies at treatment, the answer is fairly
simple: all other dynamics being equal, the type 2 antibody which can also double
bind will be better. If the two antibodies differ in other properties (such as affinities)
as well, however, then there will be an interplay between factors so that the benefits of
alternative antibodies are less clear. Here we focus on quantifying the effectiveness of
the two antibody types in minimising the amount of ligand-bound receptor complex.

1.1 Notation

In our model we use the following notation for variables:
R unbound receptor concentration
RF false ligand-bound receptor concentration
RL ligand-bound receptor concentration
L ligand concentration
F false ligand concentration
A antibody concentration
R2 complex of R & A concentration
R3 complex of R & A & F concentration

and parameters:
µi rate of production of substance i (i = L, F, R)
λi decay rate of substance i (i = L, F, R, A) .

In practice only ligand, false ligands and unbound receptors are produced, with decay
a result of degradation.

1.2 Orders of magnitude

The approximate ordering of the decay rates λ is as follows

λA ' λR2 ' λR3 � λR ≈ λRF
' λRL

� λF ' λL. (1)

These values will be important in what follows in allowing us to make asymptotic
approximations
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2 Model

2.1 Reactions

The system consists of the following reactions:

R + F
k1−−⇀

↽−−
k−1

RF , (2)

R + L
k2−−⇀

↽−−
k−2

RL, (3)

R + A
k4−−⇀

↽−−
k−4

R2, (4)

R2 + F
k5−−⇀

↽−−
k−5

R3, (5)

RF + A
k6−−⇀

↽−−
k−6

R3. (6)

The last two reactions are only relevant for the type 2 antibody. For antibodies of type
1, which prevent false ligand binding to the receptor and which do not bind to false-
ligand-bound receptors, we have k5 = k−5 = k6 = k−6 = 0. For antibodies of type 2 these
parameters will be nonzero, and relate to the binding rate of false ligand to antibody-
bound-receptors and the binding of antibodies to false-ligand-bound-receptors respec-
tively.

In what follows we may therefore analyse the dynamics of either antibody types by
considering the full system.

2.2 Equations

We assume that each of the reactions (2)-(6) is governed by the Law of Mass Action,
which leads to the following model describing the evolution of the concentration of
each species:

dR

dt
= µR − λRR − k−1(K1RF −RF )− k−2(K2LR −RL)

−k−4(K4AR −R2), (7)
dF

dt
= µF − λF F − k−1(K1RF −RF )− k−5(K5R2F −R3) (8)

dRF

dt
= −λRF

RF + k−1(K1RF −RF )− k−6(K6ARF −R3), (9)

dL

dt
= µL − λLL− k−2(K2LR −RL) (10)

dRL

dt
= −λRL

RL + k−2(K2LR −RL), (11)

dA

dt
= −λAA− k−4(K4AR −R2)− k−6(K6ARF −R3), (12)

dR2

dt
= −λR2R2 + k−4(K4AR −R2)− k−5(K5R2F −R3), (13)

dR3

dt
= −λR3R3 + k−6(K6ARF −R3) + k−5(K5FR2 −R3), (14)
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where Ki = ki/k−i (equal to the inverse of the reaction affinity).
The parameters involved in the model are summarised in Table 1.

Parameter Description Value & units
µR Production rate of new receptors mol ml−1 s−1

µF Production rate of new false ligands mol ml−1 s−1

µL Production rate of new ligands mol ml−1 s−1

λR Decay rate of receptors s−1

λF Decay rate of false ligands s−1

λL decay rate of ligands s−1

λRL decay rate of the RL-complex RL s−1

λRF decay rate of the RF -complex RF s−1

λR2 decay rate of the RA-complex R2 s−1

λR3 decay rate of the RAF -complex R3 s−1

k−1 Dissociation rate of the RF -complex RF s−1

k−2 Dissociation rate of the RL-complex RL s−1

k−4 Dissociation rate of the RA-complex RA s−1

k−5 Dissociation rate of the RAF -complex R3 to R2 + F s−1

k−6 Dissociation rate of the RAF -complex R3 to RF + A s−1

K1 Reaction constant for R + F 
 RF ml mol−1

K2 Reaction constant for R + L 
 RL ml mol−1

K4 Reaction constant for R + A 
 R2 ml mol−1

K5 Reaction constant for R2 + F 
 R3 ml mol−1

K6 Reaction constant for RF + A 
 R3 ml mol−1

k1 Association rate of R & F ml mol−1 s−1

k2 Association rate of R & L ml mol−1 s−1

k4 Association rate of R & A ml mol−1 s−1

k5 Association rate of R2 & F ml mol−1 s−1

k6 Association rate of RF & A ml mol−1 s−1

Table 1: Dimensional parameter values.

2.3 Nondimensionalisation

We choose the following non-dimensionalisation for the system, scaling time with the
ligand decay rate, since this is the time scale we are initially interested in. Each
complex is scaled with its reaction constant so that all scaled variables are of order
one

t =
1

λL

t̄, F =
µF

λF

F̄ , L =
µL

λL

L̄, A = A0Ā,

RF = K1
µR

λR

µF

λF

R̄F , RL = K2
µR

λR

µL

λL

R̄L,

R2 = K4
µR

λR

A0R̄2, R3 = K4,5
µR

λR

µF

λF

A0R̄3, R =
µR

λR

R̄,

where K4,5 = K4K5 for simplicity and where A0 is the initial dose of antibody given at
time t = 0.
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Detailed balancing of the two mechanisms by which R3 can be obtained from R (one
via RF , the other via R2) implies

k1k6

k−1k−6

=
k4k5

k−4k−5

, (15)

which implies K1K6 = K4K5.
The nondimensional governing equations are

dL̄

dt̄
= 1− L̄− q2(L̄R̄− R̄L), (16)

dF̄

dt̄
= λ̄F (1− F̄ )− q1(R̄F̄ − R̄F )− q4q5(R̄2F̄ − R̄3), (17)

dR̄

dt̄
= λ̄R(1− R̄)− q0(R̄F̄ − R̄F )− qL(L̄R̄− R̄L)− q4(R̄Ā− R̄2), (18)

dR̄L

dt̄
= −λ̄RLR̄L + p2(R̄L̄− R̄L), (19)

dR̄F

dt̄
= −λ̄RF R̄F + p1(F̄ R̄− R̄F )− p0(R̄F Ā− R̄3), (20)

dR̄2

dt̄
= −λ̄R2R̄2 + p4(ĀR̄− R̄2)− pF (F̄ R̄2 − R̄3), (21)

dR̄3

dt̄
= −λ̄R3R̄3 + p5(R̄2F̄ − R̄3) + p6(R̄F Ā− R̄3), (22)

dĀ

dt̄
= −λ̄AA− qA(R̄Ā− R̄2)− pA(R̄F Ā− R̄3), (23)

where the new nondimensional parameters are defined by

λ̄F =
λF

λL

, λ̄R =
λR

λL

, λ̄A =
λA

λL

, λ̄RF =
λRF

λL

, λ̄RL =
λRL

λL

,

λ̄R2 =
λR2

λL

, λ̄R3 =
λR3

λL

, q0 =
k1

λL

µF

λF

, qL =
k2

λL

µL

λL

,

q1 =
k1

λL

µR

λR

, q2 =
k2

λL

µR

λR

, q4 =
k4A

0

λL

, q5 =
k5

λL

µR

λR

,

p1 =
k−1

λL

, p2 =
k−2

λL

, p4 =
k−4

λL

, p5 =
k−5

λL

, p6 =
k−6

λL

,

pA =
k−6

λL

µR

λR

µF

λF

K4,5, qA =
k4

λL

µR

λR

. (24)

For simplicity, we additionally define p0 by

p0 =
k6A

0

λL

and note the two identical identities

pF =
k5

λL

µF

λF

=
q0q5

q1

,
p0q1

p6p1

=
q4q5

p4p5

=
K45A

0µR

λR

, (25)

the latter being a consequence of detailed balancing (15). The parameters appearing
the nondimensional equations are summarised in Table 2.
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Parameter Description Value
λ̄F Equilibration rate of false ligands O(1)
λ̄R Equilibration rate of receptors small
λ̄RF Rate of decay of RF complex small
λ̄RL Rate of decay of RL complex small
λ̄A Rate of decay of antibodies/drug very small
λ̄R2 Rate of decay of RA complex very small
λ̄R3 Rate of decay of RAF complex very small
p1 Rate of formation of RF

p2 Rate of formation of RL

p4 Rate of formation of R2

p5 Rate of formation of R3 from R2 + F
p6 Rate of formation of R3 from RF + A
p0 Disociation rate of R3 → RF + A
pF Rate at which R2 binds to F
pA Rate at which drug A binds to RF

q1 Rate of loss of F due to binding to R
q2 Rate of loss of L due to binding to R
q4 Rate of loss of receptors due to A-binding
q5 Rate of loss of F due to binding to R2

q0 Rate of loss of receptors due to F -binding
qL Rate of loss of receptors due to L-binding
qA Rate at which drug A is bound to R

Table 2: Parameters involved in the nondimensional model. Magnitudes of the λ∗
parameters have been determined using (1). We assume that all the other parameters
are large, since chemical binding/unbinding reactions occur on a faster timescale than
receptor or ligand production and destruction.

2.4 Alternative formulation

We wish to reformulate this problem and consider the total number of receptors, lig-
ands and false ligands: let us write these as R0, L0, F0 respectively. We nondimension-
alise by writing

R0 =
µRR̄0

λR

, L0 =
µLL̄0

λL

, F0 =
µF F̄0

λF

, (26)

then conservation of the total amount of receptors, ligands, false ligands and antibod-
ies becomes:

L̄0 = L̄ +
q2

p2

R̄L, (27)

F̄0 = F̄ +
q1

p1

R̄F +
q1p0

p1p6

R̄3, (28)

R̄0 = R̄ +
qL

p2

R̄L +
q0

p1

R̄F +
q4

p4

R̄2 +
q0p0

p1p6

R̄3, (29)

1 = Ā +
qA

p4

R̄2 +
qApF

p4p5

R̄3. (30)

Let the solution of (49)–(52) for R – equivalently rewriting (48) as a cubic in R – be
R = R0: then the total amount of ligand (L0), false ligand (F0) and receptors (R0) in the
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drug-free case (R2 = 0 = R3) are given by

L̄0 = L̄ +
q2

p2

R̄L =
(p2 + λ̄RL + q2R̄

0)

p2 + λ̄RL + q2λ̄RLR̄0
, (31)

F̄0 = F̄ +
q1

p1

R̄F =
λ̄F (p1 + λ̄RF + q1R̄0)

p1 + λ̄RF + q1λ̄RF R̄0

, (32)

R̄0 = R̄ +
q0

p1

R̄F +
qL

p2

R̄L = R̄0

(
1 +

qL

p2+λ̄RL+q2λ̄RLR̄0

+
q0λ̄F

p1+λ̄RF +q1λ̄RF R0

)
.

(33)

Now we express the number of free ligands, and free false ligands, in terms of the total
numbers of ligands and free receptors, using (27)–(28), which implies

L̄ =
p2L̄0

p2 + q2R̄
, F̄ =

p1F̄0

p1 + q1R̄
. (34)

The number of free receptors is then given by solving (29), namely

R̄0 = R̄

(
1 +

qLL0

p2 + q2R̄
+

q0F0

p1 + q1R̄

)
, (35)

which is in effect a cubic.

2.5 Reduced system

The nondimensionalised equations (16)–(23) may be combined to produce 4 equations
(in 8 unknowns) devoid of the fast reactions:

d

dt̄
(F̄ + K1

µR

λR

R̄F + K4,5A
0µR

λR

R̄3) =
λF

λL

(1− F̄ )− λRF

λL

µR

λR

K1R̄F −
λR3

λL

K4,5A
0µR

λR

R̄3, (36)

d

dt̄
(Ā + K4

µR

λR

R̄2 + K4,5
µR

λR

µF

λF

R̄3) = −λA

λL

Ā− λR2

λL

K4
µR

λR

R̄2 −
λR3

λL

K4,5
µR

λR

µF

λF

R̄3 (37)

d

dt̄
(L̄ + K2

µR

λR

R̄L) = 1− L̄− λRL

λL

K2
µR

λR

R̄L (38)

d

dt̄
(R̄ + K1

µF

λF

R̄F + K2
µL

λL

R̄L + K4A
0R̄2 + K4,5A

0µF

λF

R̄3) =

λR

λL
(1− R̄)− λR2

λL
K4A

0R̄2 −
λR3

λL
K4,5A

0 µF

λF
R̄3 −

λRF

λL
K1

µF

λF
R̄F −

λRL

λL
K2

µL

λL
R̄L

(39)

3 Drug-free system

In the absence of antibodies we first look at the steady state of system (36)-(39): using
the nondimensional parameter definitions of (24) and dropping bars for simplicity we
have:

1−R =
q0

λR

(RF −RF ) +
qL

λR

(RL−RL), (40)

1− L = q2(LR−RL), (41)

1− F =
q1

λF

(RF −RF ), (42)

RF =
p1

λRF

(RF −RF ), (43)

RL =
p2

λRL

(RL−RL). (44)
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Solving in reverse order, we find

RL =
p2RL

p2 + λRL

, RF =
p1RF

p1 + λRF

, (45)

and hence

L =
p2 + λRL

p2 + λRL + q2λRLR
, F =

λF (p1 + λRF )

p1 + λRF + q1λRF R
, (46)

RL =
p2R

p2 + λRL + q2λRLR
, RF =

p1λF R

p1 + λRF + q1λRF R
, (47)

where R is given by solving

λR(1−R) =
q0λF R

p1 + λRF + q1λRF R
+

qLλRLR

p2 + λRL + q2λRLR
. (48)

This clearly has a unique solution in 0 < R < 1, (since LHS > RHS at R = 0, and as
R increases, LHS decreases monotonically and RHS increases monotonically, and at
R = 1, we have LHS < RHS). Obtaining the root of (48) requires solution of the cubic

aR3 + bR2 + cR− d = 0, (49)

with

a = q1q2λRF λRL, d = λF (p1 + λRF )(p2 + λRL), (50)

b = λRF λRLq1q1

[
qL

λRq2

+
λF q0

λRq1

+
1

q2

+
λF

q1

+
p2

λRLq2

+
λF p1

λRF q1

− 1

]
, (51)

c = (p1 + λRF )(p2 + λRL)

[
1 +

λRF (q0λF − q1λR)

λRλF (p1 + λRF )
+

λRL(qL − q2λR)

λR(p2 + λRL)

]
. (52)

These expressions suggest that b, c > 0 (in addition to a, d > 0). Descartes rule of signs
ensures that the equation has a unique positive root R0, and for biologically relevant
parameters this will yield the unique natural equilibrium of the system (R0, L0, F 0, R0

L, R0
F ).

These values are considered the natural initial conditions for the drug-treated system
i.e. we set:

R(0) = R0, L(0) = L0, F (0) = F 0, A(0) = A0, RL(0) = R0
L, RF (0) = R0

F , R2(0) = 0, R3(0) = 0.

4 Drug-treated system

We consider the system over a number of different timescales. The first timescale is
given by t̂ = t̄

k1
and represents the period in which the antigen binds to the unbound

receptors: the system quickly settles down following an initial steep drop in unbound
receptor numbers. After the reactions have reached equilibrium there follows a period
during which the ligand and false ligand converge to near steady values – we consider
this to be the most important time for determining the quantity of ligand bound recep-
tor as the relevant timescale most closely represents the treatment phase. Following
this there is a long period of gradual antibody decay – over a timescale t̃ = t̄

λA
– during

which the system returns to the natural drug-free steady state.
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4.1 Binding phase: short term dynamics

As the drug A is introduced at t = 0 it very quickly binds to unbound receptors, with the
system quickly attaining new ratios of R, RL and RF . However, over such short times,
there is negligible creation or destruction of ligands, false ligands and receptors, and
similalrly negligible decay of antibody (so that A ≈ A0). We therefore seek a solution to
the generalised system which, over the timescale t̂ = t̄

k1
, reduces to:

R̄F = R̄F̄ , (53)
R̄L = R̄L̄, (54)
R̄2 = ĀR̄, (55)
R̄3 = ĀR̄F̄ (56)

subject to

L0 = L +
q2

p2

RL, F0 = F +
q1

p1

RF +
q1p0

p1p6

R3,

1 = A +
qA

p4

R2 +
qApF

p4p5

R3, R0 = R +
qL

p2

RL +
q0

p1

RF +
q4

p4

R2 +
q0p0

p1p6

R3.
(57)

We thus obtain the solutions

L =
p2L0

p2 + q2R
, F =

p1F0

p1 + q1R(1 + p0A/p6)
, (58)

where R satisfies

R0 = R

[
1 +

qLL0

p2 + q2R
+

q4

p4

A +
q0(p0A + p6)F0

p1p6 + q1(p0A + p6)R

]
,

(59)

which is in effect a cubic for R. Our aim is thus to investigate the effect of A on the
positive real solution for R. The signal, or response of the body which we are trying to
prevent is caused by the ligand L binding to a receptor R, hence the complex RL = RL
is a measure of the effectiveness of the drug A.

In the limit of the drug having a small influence on the system (A � 1) the ex-
pressions for L, F, R should be small perturbations of the solution (35). That is,
R = R0(1− AR1) where

R1 =
1 + F0 + R0 + R0(1 + R0 − F0 − L0)

1 + F0 + L0 + R0 + R0
(1 + R0 − F0 − L− 0). (60)

This means that a low dose of drug will cause a small reduction in the number of free
receptors, and consequently a small reduction in RL too.

However, we typically expect the amount of drug to be vastly in excess of the number
of receptors, ligands or false ligands, meaning that we can assume that Ā ' 1 from (30).

In the limit of large A0, the cubic (59) reduces to

R ∼ R∗ =
R0p4

Aq4

, hence RL ∼
p2p4R0L0

p4q2R0 + p2q4A
. (61)

This value R∗ provides, for biologically relevant parameters, a unique solution:(
R̄∗, L̄∗(R̄∗), F̄ ∗(R̄∗), 1

)
; (62)

this is the solution we match to in the next time scale.
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4.2 Ligand convergence phase

Over longer timescales, the production and decay of the various ligands and receptors,
and receptor-ligand complexes will become significant, and lead to variations in the
total number of ligands and receptors in the system. Over such timescales, totals L0,
R0 and F0 are not constant, and instead we will consider the concentrations of each
complex and each free species (R, F , L, A, RF , RL, R2, R3).

Substituting equalities (53)–(56) into equations (36)–(39) we obtain:

d

dt̄

(
F̄

(
1 + (K1 + K4,5A

0Ā)R̄
µR

λR

))
=

λF

λL

(1− F̄ )−
(

λRF

λL

K1 +
λR3

λL

K4,5A
0Ā

)
µR

λR

RF (63)

d

dt̄
(Ā(1 +

(
K4 + K4,5

µF

λF

F̄

)
R̄

µR

λR

)) = −λA

λL

Ā−
(

λR2

λL

K4Ā +
λR3

λL

K4,5Ā
µF

λF

F̄

)
R̄

µR

λR

(64)

d

dt̄
(L̄(1 + K2

µR

λR

R̄)) = 1− L̄− λRL

λL

K2
µR

λR

R̄L̄ (65)

d

dt̄

((
1 + K1

µF

λF

F̄ + K2
µL

λL

L̄ +

(
K4 + K4,5F̄

µF

λF

)
A0Ā

)
R̄

)
=

λR

λL

(
1− R̄

)
−

(
λRF

λL

K1
µF

λF

F̄ +
λRL

λL

K2
µL

λL

L̄ +

(
λR2

λL

K4 +
λR3

λL

K4,5F̄
µF

λF

)
A0Ā

)
R̄

(66)

which are valid for all time scales beyond the initial binding phase described above.
For solutions on a dimensional timescale of 1/λR we may use initial conditions given
by matching to the solution (62) above. Assuming µR � λR and recalling that λA �
λR � λL our first three equations reduce to:

dĀ

dt̄
= 0,

dF̄

dt̄
=

λF

λL

(1− F̄ ),
dL̄

dt̄
= 1− L̄,

i.e.
Ā = 1, F̄ = 1 + (F̄ ∗ − 1)e−λF t̄/(λRλL), L̄ = 1 + (L̄∗ − 1)e−t̄/λR ,

We may assume that A0 � 1, in which case the final equation becomes

d

dt̄

(
R̄Ā

(
K4 + K4,5F̄

µF

λF

))
=

λR

A0λL

− R̄Ā

(
λR2

λL

K4 +
λR3

λL

K4,5F̄
µF

λF

)
, (67)

where we have used the fact that the terms R̄2 = R̄Ā and R̄3 = R̄ĀF̄ dominate.
We first consider antibody 1, that is we take K4,5 = 0. Our differential equation is

then reduced to

d

dt

(
R̄Ā

)
=

λR

A0K4λL

− R̄ĀλR2λL
, (68)

which has the solution

R̄ =
1

Ā

(
λR

A0K4λR2

+ Ce−λR2
t/λL

)
(69)

=
1

Ā

λR

λR2A
0K4

+
1

Ā

(
R∗ − λR

λR2A
0K4

)
e−λR2

t̄/λL . (70)

Thus, in the presence of antibody 1,

R̄ → λR

A0K4λR2

(71)
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for the time scale prior to the decay of the antibodies.
For antibody 2 we need to consider K4,5 6= 0 and make use of the approximation

λR2 ≈ λR3. The differential equation then has the solution

R̄ =
1

Ā
(
K4 + K4,5F̄

µF

λF

) (
λR

A0λR2

+ Ce−λR2
t̄/λL

)
(72)

Thus, in the presence of antibody 2,

R̄ → λR

A0
(
K4 + K4,5

µF

λF

)
λR2

(73)

for the time scale prior to the decay of the antibodies.

4.3 Antibody decay phase

The final phase of the system is that in which it returns to the untreated state as a
result of the drug leaving the body. For t̃ = t̄/λA the first three equations of our system
reduces to

dA

dt̃
= −A,

dF

dt̃
= 0,

dL

dt̃
= 0,

i.e.
A = e−λA t̄, F = 1, L = 1,

by matching from the previous solution, and R may be solved for as before if required.
As the amount of antibody decays to zero, our solutions return to the drug-free state
(R0, L0, F 0, 0).

5 Antibody comparison

Consider the quasi-equilbrium to which R converges to in the intermediate phase at
the end of the ligand convergence phase and the start of the antibody decay phase.
We treat this as a measure of treatment success, since the number of ligand bound
receptors is proportional to R: of interest is the effect of K4,5 since this differentiates
the behaviour of the two antibodies.

From (71) and (73) we have, in dimensional variables, that

RL → 1

A0

K2

K4

µR

λR2

µL

λL

with type 1 antibodies;

RL → 1

A0

K2

K4 + K4,5
µF

λF

µR

λR2

µL

λL

with type 2 antibodies;

respectively, prior to the phase of antibody decay. Assuming that body parameters not
associated with antibody dynamics (such as λR) remain the same in the presence of
either antibody, we may conclude that a measure of the effectiveness of antibodies of
type 1 is:

λ
(1)
R2

K
(1)
4 A0(1) (74)

and that a comparable measure for antibodies of type 2 is:

λ
(2)
R2

K
(2)
4

(
1 + K

(2)
5

µF

λF

)
A0(2) (75)

where the superscripts refer to the relevant antibodies.
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6 Conclusions

Results confirm what we expect intuitively, that in a system flooded with antibodies,
those antibodies able to bind to receptors which are already bound with false ligands
(thus ”‘double locking”’ these receptors from potential ligand binding) will perform bet-
ter than those which will not, unless there is a significantly larger amount of the other
antibody or there is a significant difference in the antibody performance. Explicitly,
an antibody will perform better if the affinity of the antibody and receptor (1/K4) or the
decay rate of antibody bound receptor λR2 are large. Since the latter is assumed to
be similar to the antibodies intrinsic decay rate, however, and is the timescale upon
which solutions R converge, a significant difference in λR2 may be an inappropriate
target. The quantity of antibodies that could be provided in a dose, A0, is also not
considered to be restricted and would thus be similar for each antibody type.

Expressions (74) and (75) therefore quantify the necessary difference between the
affinity of the second antibody and receptor 1/K

(2)
4 , the affinity of the false ligand and

antibody-bound-receptors 1/K
(2)
5 (or alternatively the affinity of the antibody and the

false-ligand-bound-receptor 1/K
(2)
6 ≈ 1/K

(2)
4,5 ) and the affinity of the first antibody and

receptor 1/K
(1)
4 so that the better antibody can be identified i.e. a simpler antibody of

type 1 is better only if

λ
(1)
R2

K
(1)
4 > λ

(2)
R2

K
(2)
4

(
1 + K

(2)
5

µF

λF

)
. (76)

Appendix

Numerical solvers for the full system were developed during the study group in Mat-
lab but for meaningful simulations require more accurate parameter values than we
managed to estimate at the time: this is work in progress.
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