
8th Mathematics in Medicine Study Group
Loughborough University, 15–19 September 2008

Modelling of the Growth of Engineered Orthopaedic
Tissue in Zero Force and Variable Load Environments

Problem presented by: Henk K. Versteeg

Report by: Chris Catt Daniel Friedrich Shailesh Naire

Other contributors:
Jennifer Bloomfield Chris Catt John Fozard
Daniel Friedrich John King Yi-Ping Lo
Shailesh Naire Colin Please John Ward

(Report: [February 5, 2009] version)

1 Introduction

The problem was presented to the study group by Henk Versteeg as part of the remedi -
Regenerative Medicine - A New Industry - Grand Challenge project [1]. Regenerative medicine
is a pioneering field that aims to create new treatments for diseases that result in the loss
of major tissue function. An emerging therapy in regenerative medicine is tissue engineering.
A striking definition of tissue engineering was by Langer and Vacanti [2], who stated it to
be an interdisciplinary field that applies the principles of engineering and life sciences toward
the development of biological substitutes that restore, maintain, or improve tissue function or
a whole organ. The context of Henk’s presentation was related to tissue engineering of the
intervertebral disc (IVD).

The intervertebral discs lie between vertebrae in the human spine. They are connected to the
vertebrae by cartilage filaments. The discs allow relative movement of the adjacent vertebrae
and also act as shock absorbers. The IVD is the most avascular tissue in the human body, and
its capacity to grow and repair itself is as low as articular cartilage [3]. Hence, nutrients for
their regeneration have to be supplied from the adjacent vertebrae.

The IVD has two distinct anatomic regions (Figure 1). The annulus fibrosus (AF) forms the
circumference of the IVD, and is composed of layers of fibrous cartilage which provide resistance
to tensile and shear loads. The nucleus pulposus (NP) forms the central portion, and is jelly-like
in form, providing resistance to compressive loading. Each region consists of chrondocytes (cells)
surrounded by an abundant extracellular matrix (ECM) with different morphologies [3,4]. The
ECM comprises mainly of collagen, glycosaminoglycan (GAG) and water, and forms the main
backbone of the tissue. GAG levels are generally considered as a good indicator of the overall
quality of the ECM.

The functional ability of the IVD diminishes through age and general degeneration. More-
over, injury can lead to a hole in the AF which can cause significant loss of nucleus pulposus.
The grand challenge is to use tissue engineering concepts to create a viable spinal disc construct
which can then replace the damaged or diseased one. This is an area of intense research activity
and several researchers have tried to engineer an IVD construct, for example, Sato et al. [5]
have produced a high-density 3-D culture of AF cells to investigate IVD regeneration in white
rabbits.

The tissue engineering process generally involves seeding the cells onto a biodegradable
porous scaffold and providing adequate nutrients so that the cells can grow into a tissue. This
set-up is cultivated in a bioreactor which provides a controlled environment for cell growth.
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Figure 1: Left: schematic of the spinal cord from the Encyclopaedia Britannica. The interver-
tebral disc can be seen between the two vertebrae. Right: schematic of the intervertebral disc
showing the annulus fibrosus and the nucleus pulposus.

Figure 2 is a schematic of the tissue engineering process in a rotating bioreactor. This poses
a considerable challenge in both the experimental design (for example, in the manufacturing
of a suitable scaffold) as well as in the optimization of the experimental parameters to grow a
viable tissue. The latter is difficult due to different processes occurring at different timescales
(for example, it takes around 10 days for the seeded cells to transform into GAG producing
cells, while at least 6 weeks are required for the growth of sufficient tissue).

Mathematical and computational modelling can be a valuable tool in better understand-
ing the various processes as well as in optimising the experimental parameters [6]. One such
mathematical model was presented to the study group by Henk. The model was based on exper-
imental data from Vunjak-Novakovic and Obradovic experiments [7] for creation of engineered

Figure 2: Cell-seeded scaffold cultured in a rotating bioreactor.
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Figure 3: Diagram showing the connections between the model constituents, s = scaffold, w =
water, Cp = proliferating cells, Cg = GAG producing cells, G = GAG and n = nutrients. The
labels p, a,b and l represent rate constants, the latter 3 representing the model parameters
α, β and λ, respectively.

cartilage by culture of bovine chrondcytes on biodegradable polymer scaffolds in bioreactors.
These experiments provided data for the time evolution of cells and GAG which formed the
basis of the model by Henk and co-workers.

This main aim of this study is

1. to incorporate the current understanding of processes controlling the cell seeding, cell
proliferation, cell differentiation, GAG production and scaffold degradation into a rational
mathematical model

2. to handle the moving boundary problem of the growing tissue construct

3. to optimise the experimental conditions of the bioreactor to grow a better quality tissue

2 Model Formulation

The model is based on mixture (or multiphase) theory [8], whereby each tissue component
is treated on the macroscale as a continuum phase that occupies the same region of space.
Mass and force balance equations are then written for each phase (with respect to their volume
fractions), which determines their evolution. We do not consider the force balance in the model
presented here. This will be investigated in future models. Mixture theory-type models have
been used with reasonable success to understand the tissue engineering process [9, 10].

Figure 3 depicts the components of the system and their connections. The biodegradable
scaffold (represented by its volume fraction s) is initially seeded with proliferating cells (repre-
sented by its volume fraction Cp). Nutrients (n represents the nutrient/oxygen concentration)
dissolved in the culture medium (the culture medium is assumed to be mainly water, with
volume fraction w) diffuse through the scaffold and is used by the cells to proliferate. The
proliferating cells are observed to approximately double during the first 4 days after seeding [7].
These cells are then transformed into GAG producing cells (represented by its volume fraction
Cg). This is observed to occur during the first 10 days of the experiment [7]. The production
of GAG (represented by its volume fraction G) starts with the first GAG producing cells and
increases up to day 10 when the full production rate is reached. The synthesised GAG pushes
the cells and the scaffold apart leading to the gradual growth of the tissue construct. The tissue
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Figure 4: Diagram explaining the expansion of the tissue material. The cells (empty circles)
produce GAG (red circles) which pushes the cells apart so that the tissue materials grows.

construct was observed to double in size over a period of 6 weeks [7]. This scenario is sketched
in Figure 4. The scaffold, which initially occupies about 3% of the total volume, degrades to
roughly 0.6% over the course of the experiment. For the purpose of our model, we will assume
that the scaffold material degrades to water.

The scaffold geometry is a coin shaped polymer matrix with a diameter of 5 mm and a
thickness of 1 mm [7]. The small aspect ratio makes it reasonable to consider only a 1D model,
with the co-ordinate x along the thickness of the scaffold. Figure 5 shows a cross-section along
the thickness of the scaffold. We assume symmetry about the origin. The moving boundary,
representing the edge of the growing tissue construct, is represented by L(t), where t is time.

We now translate the above processes into a mathematical model. The model is based on
the convection, diffusion, production and depletion of each phase. Their equations can then be
written as

∂Cp

∂t
+

∂

∂x

(
vCp −Dcp

∂Cp

∂x

)
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]
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] [
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(vs) = −βs, (5)

∂n

∂t
+

∂

∂x

(
vn−Dn

∂n

∂x

)
= −γ(Cp + Cg)

[
n

n+B0

]
, (6)

w + s+G+ Cp + Cg = 1. (7)

The first term on the LHS of equations (1 - 5) represent the rate of change of the volume fraction
of each phase, the second term describes their convection and diffusion, while the terms on the
RHS describe their production and depletion. The same description holds for equation (6) with
the volume fraction replaced by the nutrient concentration. Equation (7) is a statement of
volume conservation. The convective speed v(x, t) of the mixture is related to the diffusivities
of each phase. This can be realized by adding equations (1 - 5) and using equation (7).
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Figure 5: Geometry of the scaffold.

The expressions for the production and depletion of each species have been postulated based
on the following ideas.

1. Cells proliferate by uptake of nutrients. Hence their production is dependent on the
nutrients available (assumed proportional to the nutrient concentration).

2. This production rate is capped via a threshold nutrient concentration B0, beyond which
it levels out (represented by a Michaelis-Menten-type term).

3. Their depletion is due to transformation into GAG producing cells. This depends on the
frequency of collisions between the cells (assumed to be proportional to the proliferating
and GAG producing cells available). The same holds for the production of GAG producing
cells.

4. The production of GAG is dependent on the availability of GAG producing cells and
nutrients. This inverse dependence of the production on the GAG is to mimic the slowing
down in production rate as more GAG is produced. Similar ideas hold for the production
and depletion of water and scaffold.

5. We assume here that the scaffold biodegrades into water.

6. The depletion of nutrients depends on the proliferating and GAG producing cells consum-
ing them (assumed to be proportional to each of the available cell-types).

The parameters in equations (1 - 7) are provided in Table 1.

3 The Non-dimensional Problem

We now non-dimensionalise the above equations. A characteristic time is based on a GAG
production time scale, α−1 ≈ 11 days, a characteristic length scale is L ≈ 1 mm, a characteristic
speed is αL ≈ 10−6 mm/s and a characteristic nutrient concentration (based on an initial
concentration) is n0 ≈ 10−10 mol/mm3. Using these, we non-dimensionalise t = α−1t̃, x = L0x̃,
v = αL0ṽ, n = n0ñ. The non-dimensional equations are (dropping the ∼ on the variables)
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Symbol Parameter Size Units Source
L Thickness of the scaffold 1 mm Henk
d Diameter of the scaffold 5 mm Henk
Dcp Diffusion of proliferating cells 10−7 − 10−6 mm2 s−1 Henk
Dcg Diffusion of GAG producing cells 10−11 mm2 s−1 [7]
Dn Diffusion of oxygen 3× 10−3 mm2 s−1 Henk
DG Diffusion of GAG 7× 10−9 mm2 s−1 [7]
Dw Diffusion of water 10−5 − 10−3 mm2 s−1 guess
α GAG production rate 10−6 s−1 [7]
λ GAG cell production rate 10−6 s−1 [7]
β scaffold degradation rate 10−6 s−1 [7]
p cell proliferation rate 2.5× 10−6 s−1 [7]
γ oxygen consumption rate 10−12 mol mm−3 s−1 [7]
B0 threshold oxygen concentration 6× 10−6 mol l−1 Henk
n0 initial oxygen concentration 10−10 mol mm−3 Henk
Cp0 initial cell volume fraction 0.5 1 guess
s0 initial scaffold volume fraction 0.03 1 [7]

Table 1: Parameters and their estimates

∂Cp

∂t
+

∂

∂x

(
vCp − D̃cp

∂Cp

∂x

)
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∂t
+

∂
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(
vn− D̃n

∂n

∂x

)
= −γ̃(Cp + Cg)

[
n

n+ B̃0

]
, (13)

w + s+G+ Cp + Cg = 1. (14)

The dimensionless parameters and their estimates are provided in Table 2. Some of the
estimates were obtained from Obradovic et al. [7] and Henk Versteeg’s presentation to the
study group.

Based on the parameter estimates, further simplification of the above equations is possible.
Unfortunately, there is a lot of uncertainty in the accuracy of some of the parameters obtained
from literature. For example, the GAG molecules are large and hence intutively GAG diffusion
is likely to be very slow. However, accurate data of GAG diffusivity was not found and so
the GAG diffusion is retained in the equations. One simplification that is possible relates to
the diffusivity and the consumption rate of nutrient/oxygen molecules. These molecules are
very small and thus diffuse rapidly. Moreover, they are also consumed rapidly relative to the
quantity of GAG produced. Hence, diffusion of oxygen and its consumption dominate the other
terms in equation (13). The scaffold does not degrade substantially in the time scale of interest
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Symbol Definition Size
p̃ p/α 2.5
λ̃ λ/α 1
β̃ β/α 1
γ̃ γ/(αn0) 104

B̃0 B0/n0 6× 10−2

D̃cp Dcp/(αL2) 0.1− 1
D̃cg Dcg/(αL2) 0
D̃n Dn/(αL2) 1.5× 103

D̃G DG/(αL2) 7× 10−3

D̃w Dw/(αL2) 102 − 103

Table 2: Non-dimensional parameters of the system

(it degrades to about a fifth of its initial volume in about 6 weeks). Therefore, we neglect the
influence of the scaffold in this problem. The reduced system can be written as follows

∂Cp

∂t
+

∂

∂x

(
vCp − D̃cp

∂Cp

∂x

)
= p̃

[
n

n+ B̃0

]
Cp − λ̃Cp(Cp + Cg), (15)

∂Cg
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+

∂

∂x

(
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∂Cg

∂x

)
= λ̃Cp(Cp + Cg), (16)

∂G
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+

∂
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(
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∂G
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)
= Cg

[
n
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] [
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, (17)

D̃n
∂2n

∂x2
= −γ̃(Cp + Cg)

[
n

n+ B̃0

]
, (18)

∂v

∂x
= D̃cp

∂2Cp

∂x2
+ D̃cg

∂2Cg

∂x2
+ D̃G

∂2G

∂x2
+ D̃w

∂2w

∂x2
, (19)

w = 1− Cp − Cg −G. (20)

Note that we have replaced the equation for the volume fraction of water with that for the
convective speed of the mixture.

4 Boundary and Initial Conditions

The boundary conditions imposed on the above equations are as follows. We assume symmetry
at x = 0. Hence,

∂Cp

∂x
=
∂Cg

∂x
=
∂n

∂x
=
∂G

∂x
= v = 0, at x = 0. (21)

We consider two sets of boundary conditions at x = L(t).

QCp = Cp
dL

dt
, QCg = Cg

dL

dt
, QG = QG+G

dL

dt
, n = 1, (22)

and

Cp = Cg = G = 0, w = 1, n = 1, (23)
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where

QCp = vCp − D̃cp
∂Cp

∂x
, QCg = vCg − D̃cg

∂Cg

∂x
, QG = vG− D̃G

∂G

∂x
(24)

are the flux of proliferating and GAG producing cells, and GAG, respectively. The first two
conditions in equation (22) imply that there is no flux of proliferating and GAG producing cells
out of the tissue construct, relative to the moving boundary. However, we allow a flux of GAG
(assumed proportional to the GAG volume fraction with proportionality constant Q > 0) to
leave the tissue construct, relative to the moving boundary. This mimics the “washing away” of
GAG. Due to volume conservation, this loss of GAG is replaced by water from the surrounding
culture medium. The second set of boundary conditions, in equation (23) are chosen based
on the fact that at the tissue construct edges there is an infinite reservoir of water available
via the culture medium. The boundary condition on the nutrient concentration, used in both
sets of boundary conditions, assumes an infinite supply of nutrients from the culture medium

outside the tissue construct. The kinematic condition, v(x = L(t)) =
dL

dt
, is used to evolve the

tissue construct boundary. Using this and the above defined fluxes, the first three boundary
conditions in equation (22) can be then simplified to

∂Cp

∂x
=
∂Cg

∂x
= 0, −D̃G

∂G

∂x
= QG. (25)

The initial conditions chosen are;

at t=0;

Cp = Cp0 , Cg = 0, G = 0 s = s0, w = 1− Cp0 − s0, L = 1. (26)

This mimics the scenario in which an initially uniform distribution of scaffold seeded cells are
allowed to evolve.

5 Results

For the purposes of the numerical solution, we find it convenient to transform the domain
0 ≤ x ≤ L(t) to a fixed domain 0 ≤ ξ ≤ 1, using the transformation ξ =

x

L(t)
. Using this

change of variable, we find that;

∂

∂t
=

∂

∂t
− ξ

L

dL

dt

∂

∂ξ
, (27)

∂

∂x
=

1
L

∂

∂ξ
, (28)

and

∂2

∂x2
=

1
L2

∂2

∂ξ2
. (29)

The modified system of equations are then solved numerically ensuring that they are in
conservation form. A centered finite difference scheme is used for the spatial derivatives. A
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Parameter Value
p̃ 0.1
λ̃ 2
γ̃ 1
D̃cp 0.01
D̃cg 0.01
D̃n 1
D̃G 0.01
D̃w 1

Table 3: Non-dimensional parameters used in numerics

backward Euler discretization is used to advance the system in time. For the initial attempt
at solving the system of equations some of the parameters in table 2 were modified. These are
shown in table 3.

We first present the results using the boundary conditions in equation (22). Figures 6 (a),(b)
and (c) show the distribution of proliferating and GAG producing cells, and GAG after 0, 20
and 42 days, respectively. The proliferating cells are observed to uniformly decrease in time
(approximately 90% depletion in 42 days), as they are converted into GAG producing cells. This
subsequently increases the GAG producing cells, which in turn increases the GAG production.
Figure 6 (d) shows the nutrient distribution after 42 days. There is a sufficient supply of
nutrients near the tissue construct edge. However, in the center of the tissue construct, there is
severe depletion of nutrients (depletes to approximately a tenth of its initial value). This is due
to their intake by GAG producing cells to produce GAG, which is maximum near the tissue
construct center (see Figure 6 (b),(c)). This would need to be monitored in order to prevent
the center of the tissue construct from being completely starved of nutrients, before appreciable
levels of GAG have been produced. Figure 6 (e) shows the evolution of the tissue construct
thickness L in time. After an initial phase of insignificant growth (about 5 days), the tissue
construct thickness is observed to increase almost linearly in time. It grows to almost three
times its initial thickness in about 42 days. This is more than that observed in experiments
(doubles in size in 42 days [7]), which suggests that the value of the GAG production rate
parameter α is greater than it should be. The rate of growth of the tissue construct v as a
function of position is shown in Figure 6 (f). It is also observed to vary almost linearly with
position, with the maximum growth rate near the tissue construct edge.

The results using the boundary conditions in equation (23) are presented in Figure 7. The
same trends are observed here as in the earlier case. The only marked difference is in the initial
growth of the tissue construct, which is quite dramatic for this case (see Figure 7 (e)). The
tissue construct is seen to double in size in about 10 days, in contrast to the earlier case where
insignificant growth is observed in the same amount of time. As described in Section 4, the
construct, for this case, is entirely surrounded by water. At least during the initial stage, the
water diffuses rapidly into the construct resulting in significant growth.

6 Conclusions and Future Work

We were presented with a model by Henk and co-workers for growing engineered orthopaedic
tissue based on experimental data [7]. We pin-pointed several ambiguities in their model, in
particular, with the expressions used in their GAG production. Our main goal was to derive
a rational model which would facilitate better understanding of the physical processes involved
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Figure 6: Results using the boundary conditions in equation (22). Graphs show cell and GAG
volume fractions after (a) 0, (b) 20 and (c) 42 days, (d) nutrient concentration after 42 days,
(e) tissue construct size versus time and (f) the rate of tissue growth after 42 days.
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Figure 7: Results using the boundary conditions in equation (23). Graphs show cell and GAG
volume fractions after (a) 0, (b) 20 and (c) 42 days, (d) nutrient concentration after 42 days,
(e) tissue construct size versus time and (f) the rate of tissue growth after 42 days.
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as well as in reflecting the in vitro results [7]. The model accounts for GAG production due
to cell uptake of nutrients as well as due to the changing cell characteristics (from proliferation
to GAG producing) at different time periods. The novelty in our model was in the treatment
of cells as two distinct entities, i.e., proliferating and GAG producing. This facilitated the
transfer of proliferating cells into GAG producing cells which is important in controlling GAG
production subsequently influencing the growth of the tissue construct. The role of water via
the culture medium, in how it flows through the construct and its use in cell proliferation and
GAG production, was also catered for. Scaffold degradation was initially included in the model
but was omitted due to its negligible effect on the essential dynamics of the growing construct.

The model successively captures several qualitative features of the tissue engineering process
observed in experiments [7]. However, for better quantitative comparison, an adjustment in the
parameters is required. For example, experimental observations showed that cells proliferate
only in the first four days and the production of GAG is initiated after 12 days. Our model ac-
commodates for this through a specified transfer rate (represented by the parameter λ) between
proliferating and GAG producing cells. The value of λ used resulted in the production of GAG
being significantly lower compared to experimental observations. Also, the GAG production
rate parameter α used resulted in the tissue construct growing to almost three times its initial
size. Experimental observations only show the construct to double its size in the same amount
of time. These parameters need adjustment so as to get better agreement with experiments [7].

In future the effects of stress between the different phases would have to be considered, in
particular the shear stress’s involved as cell layers moving relative to each other. Also, the effect
of mechanical loading on the construct will be investigated.
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